skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Anh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reconstructing 3D granular microstructures within volumes of arbitrary geometries from limited 2D image data is crucial for predicting the material properties, as well as performances of structural components accounting for material microstructural effects. We present a novel generative learning framework that enables exascale reconstruction of granular microstructures within complex 3D geometric volumes. Building upon existing transfer learning techniques using pre-trained convolutional neural networks (CNN), we introduce several key innovations to overcome the difficulties inherent in arbitrary geometries. Our framework incorporates periodic boundary conditions using circular padding techniques, ensuring continuity and representativeness of the reconstructed microstructures. We also introduce a novel seamless transition reconstruction (STR) method that creates statistically equivalent transition zones to integrate multiple pre-existing 3D microstructure volumes. Based on STR, we propose a cost-effective strategy for reconstructing microstructures within complex geometric volumes, minimizing computational waste. Validation through numerical experiments using kinetic Monte Carlo simulations demonstrates accurate reproduction of grain statistics, including grain size distributions and morphology. A case study involving the reconstruction of a 4-blade propeller microstructure illustrates the method’s capability to efficiently handle complex geometries. The proposed framework significantly reduces computational demands while maintaining high reconstruction quality, paving the way for scalable microstructure reconstruction in materials design and analysis. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the Xscope framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. Xscope is able to identify inputs that trigger exceptions in about 73% of the tested functions. 
    more » « less
  3. We consider transferability estimation, the prob- lem of estimating how well deep learning models transfer from a source to a target task. We focus on regression tasks, which received little previous attention, and propose two simple and computa- tionally efficient approaches that estimate trans- ferability based on the negative regularized mean squared error of a linear regression model. We prove novel theoretical results connecting our ap- proaches to the actual transferability of the optimal target models obtained from the transfer learning process. Despite their simplicity, our approaches significantly outperform existing state-of-the-art regression transferability estimators in both accu- racy and efficiency. On two large-scale keypoint re- gression benchmarks, our approaches yield 12% to 36% better results on average while being at least 27% faster than previous state-of-the-art methods. 
    more » « less
  4. Starting in the early 2000s, sophisticated technologies have been developed for the rational construction of synthetic genetic networks that implement specified logical functionalities. Despite impressive progress, however, the scaling necessary in order to achieve greater computational power has been hampered by many constraints, including repressor toxicity and the lack of large sets of mutually orthogonal repressors. As a consequence, a typical circuit contains no more than roughly seven repressor-based gates per cell. A possible way around this scalability problem is to distribute the computation among multiple cell types, each of which implements a small subcircuit, which communicate among themselves using diffusible small molecules (DSMs). Examples of DSMs are those employed by quorum sensing systems in bacteria. This paper focuses on systematic ways to implement this distributed approach, in the context of the evaluation of arbitrary Boolean functions. The unique characteristics of genetic circuits and the properties of DSMs require the development of new Boolean synthesis methods, distinct from those classically used in electronic circuit design. In this work, we propose a fast algorithm to synthesize distributed realizations for any Boolean function, under constraints on the number of gates per cell and the number of orthogonal DSMs. The method is based on an exact synthesis algorithm to find the minimal circuit per cell, which in turn allows us to build an extensive database of Boolean functions up to a given number of inputs. For concreteness, we will specifically focus on circuits of up to 4 inputs, which might represent, for example, two chemical inducers and two light inputs at different frequencies. Our method shows that, with a constraint of no more than seven gates per cell, the use of a single DSM increases the total number of realizable circuits by at least 7.58-fold compared to centralized computation. Moreover, when allowing two DSM’s, one can realize 99.995% of all possible 4-input Boolean functions, still with at most 7 gates per cell. The methodology introduced here can be readily adapted to complement recent genetic circuit design automation software. A toolbox that uses the proposed algorithm was created and made available at https://github. com/sontaglab/DBC/. 
    more » « less
  5. Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026